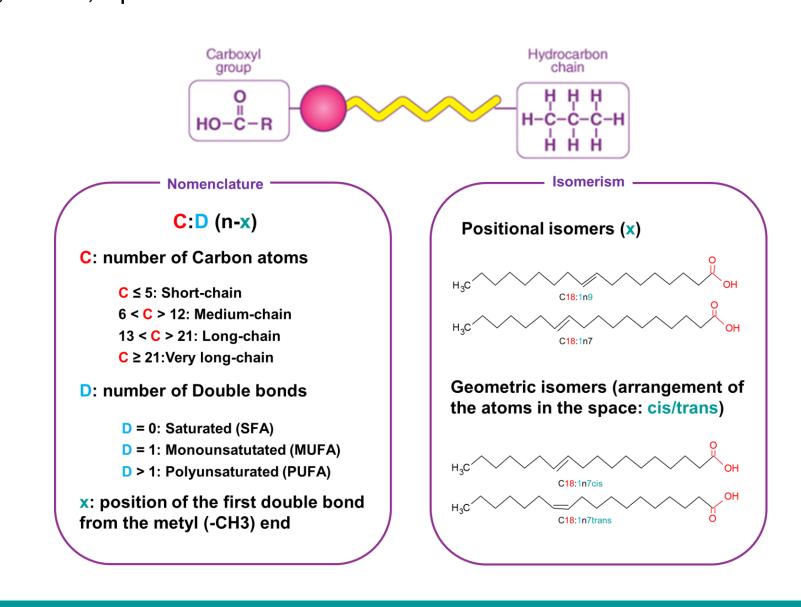
Analytical Unit
Metabolomics & Bioanalysis

A Liquid Chromatography-High Resolution Mass Spectrometry Method (LC-HRMS) for the Comprehensive Determination of Fatty Acids

Marta Roca², María Isabel Alcoriza-Balaguer¹, Juan Carlos García-Cañaveras¹, Adrián López Chamorro¹, and Agustín Lahoz^{1,2} ¹Biomarkers and Precision Medicine Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain.


²Analytical Unit, Medical Research Institute-Hospital La Fe, Av. Fernando Abril Martorell 106, Valencia, 46026, Spain.

BACKGROUND

- Fatty acids (FA) are key metabolites that play a central role in cellular biology.
- Dysregulated FA metabolism has been associated with many diseases, including obesity, type 2 diabetes, non-alcoholic fatty liver disease or cancer.
- Despite LC-MS is the most widespread analytical approach for metabolomics and lipidomics, GC-MS determination after sample derivatization remains the most common platform for FA analysis.

AIM

- Development and validation of a derivatization-free liquid chromatography (LC)-High Resolution (HR)-MS-based method that covers the quantitation of 48 FA, from 12 to 24C, up to 6 unsaturations and up to 5 isomers of a given specie.
- ✓ Combination of this new LC-HRMS method with other available tools as FAMetA¹ for the identification of unknown FA in biological samples.

UPLC-HRMS

UPLC CONDITIONS

Column: Cortecs C18 column (2.1mm × 150mm, 1.6µm)

A1: 2.5mM ammonium acetate in 60:40 water: methanol B1: 2.5mM ammonium acetate in 95:5 acetonitrile: isopropanol B2: 50:50 acetonitrile:isopropanol (clean-up between inyections)

Gradi

Mobile phases:

dients	Separation	method	Equilibration method			
	Time (min)	%В	Time (min)	%В		
	0.5	45	0.5	99		
	19	55	2	99		
	23	99	4	45		

Flow rate: 300uL/min

Temperature: 45 °C Chromatogram elution time: 36 min + 6 min equilibration/conditionning

MS DETECTION ·

- Source parameters Ionization mode: ESI-
- Spray Voltage (kV): 1.5
- Sheath gas flow rate (a.u): 60

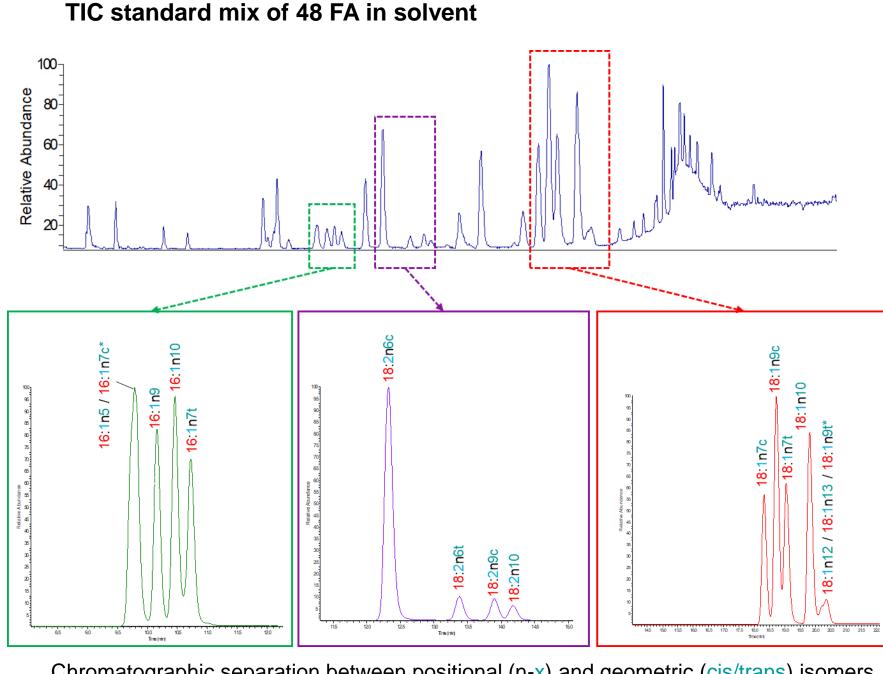
Auxiliary gas temperature (°C): 300

- Capillary temperature (°C): 300
- S-lens RF-level (a.u.): 75
- **Orbitrap adquisition**
 - Full scan

Mass range: 100-450 m/z

Scan type: Centroid Resolution: 140.000

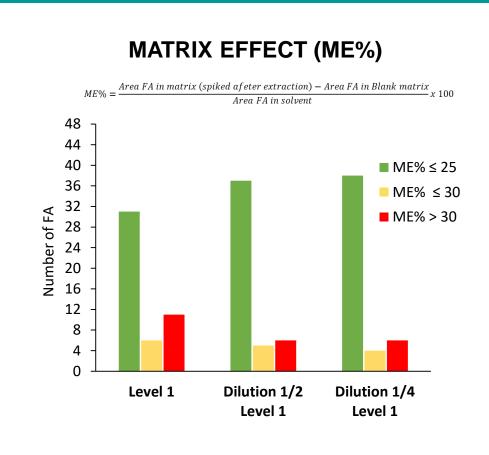
Maximum IT: 100 ms


AGC target: 10⁶

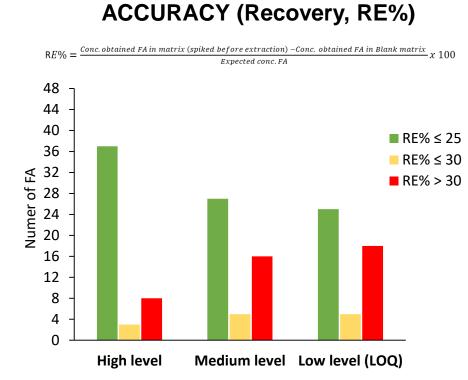
48 FATTY ACIDS

	SFA	MUFA + PUFA (D>1, n-x)									
С	(D=0)	n3	n 5	n 6	n 7	n 9	n 10	n12	n13		
10	10:0										
12	12:0										
14	14:0		14:1 n 5								
15	15: <mark>0</mark>										
16	16:0		16:1 n 5		16:1 n 7 c/t	16:1 n9	16:1n10				
17	17:0										
18	18:0	18:3 n3		18:2n6c/t 18:3n6	18:1n7 c/t	18:1n9c/t 18:2n9	18:1n10 18:2n10	18:1n12	18:1n13		
19	19:0										
20	20:0	20:3n3 20:4n3 20:5n3		20:2n6 20:3n6 20:4n6	20:1 n 7	20:1n9 20:3n9		20:1 n 12			
22	22:0	22:3n3 22:5n3 22:6n3		22:2n6 22:3n6 22:4n6 22:5n6		22:1n9 22:3n9					
24	24:0	24:5n3 24:6n3		24:4n6 24:5n6		24:1n9					

ELUTION PROFILE



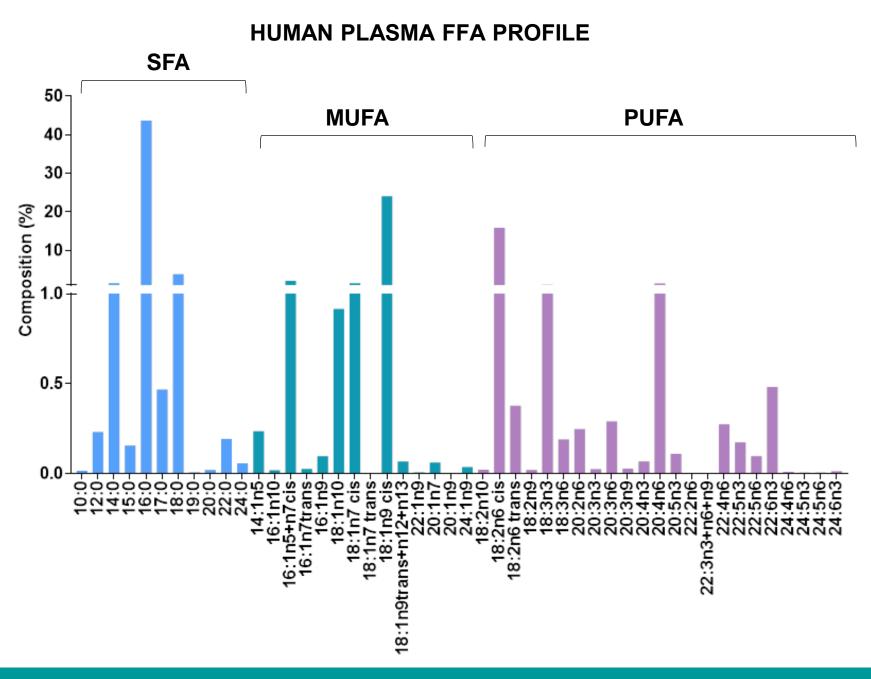
Chromatographic separation between positional (n-x) and geometric (cis/trans) isomers

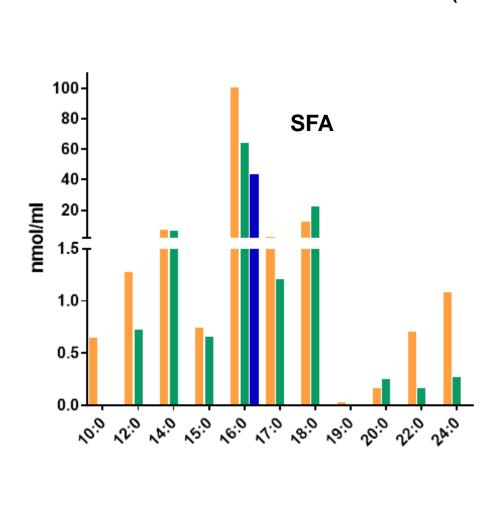

*The method is not able of chromatographically separating FA 16:1n5 and 16:1n7cis, 18:1n12, 18:1n13 and 18:1n9trans, 22:3n3, 22:3n6 and 22:3n9.

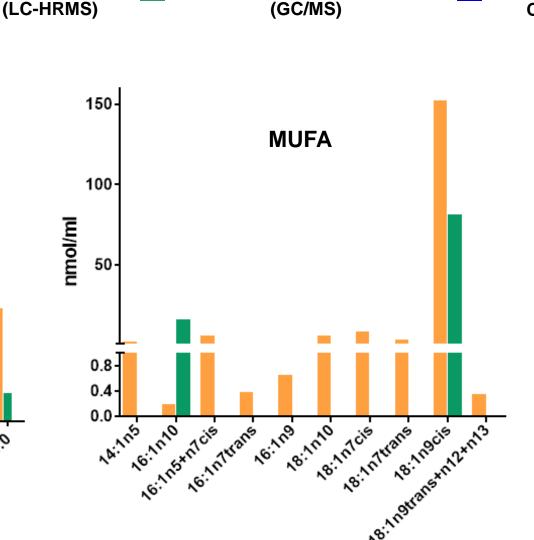
METHOD VALIDATION

SAMPLE PREPARATION FFA (Free fatty Acids) **NIST SRN 1950** Protein removal Solvent extraction

c=cis; t=trans

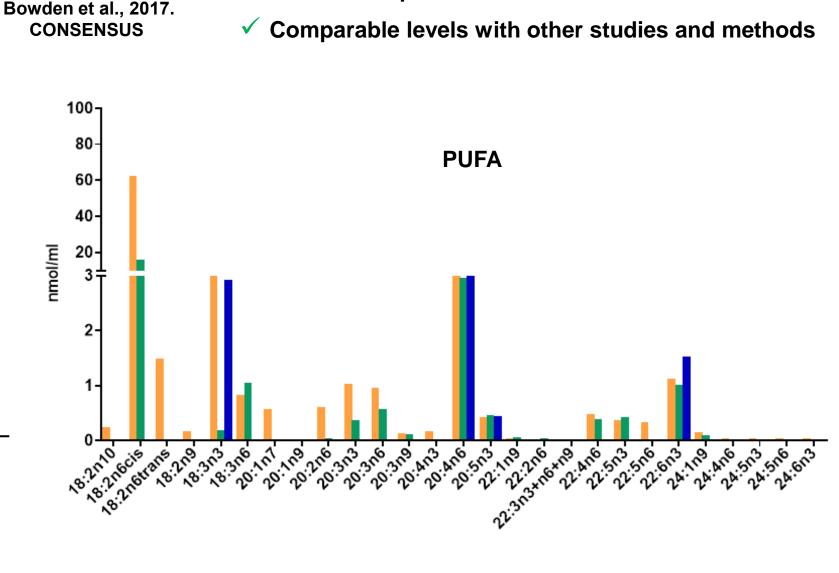


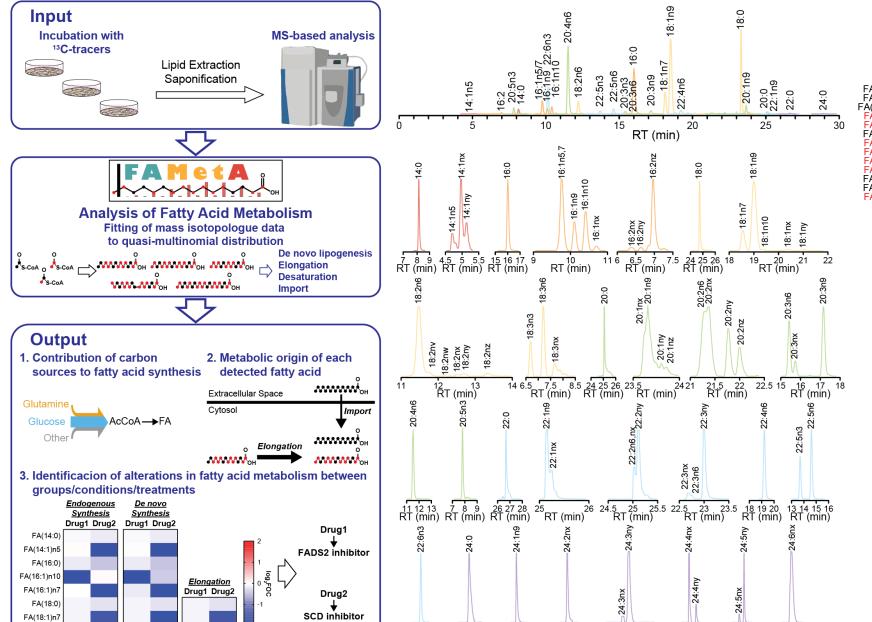

- **✓** Dilution of sample decrease ME% ✓ Most of FA present good or acceptable RE% in 3
- levels ✓ Deuterated ISTD present good RE%
- ✓ Correction factors applied when RE%<30
 </p>
- √ 100% of FA present good repeatibility in the 3 levels
- reproducibility in 3 levels


√ >90% of FA present good or acceptable

- × Deuterated ISTD don't present similar ME% as FA
- **×** Special attention in FA with ME% and R%>30

✓ We have improved the number of FFA detected.




FEDER of Comunitat Valenciana 2014-2020).

FFA LEVELS

Quehenberger et al., 2010.

COMBINED USE WITH FAMetA¹

28 29 30 26 27 28 25 26 24 24.5 25 RT (min) RT (min) RT (min)

- - ✓ Detection of 62 FA species.
 - √ 33 unknown FA.
 - Identification of the 33 unknown FA by the reconstruction of their biosynthesis route through the combination of isotope tracers and small-molecule inhibitors of FASN, SCD and FADS2.
 - √ 11 identities are confirmed with commercially available standards ✓ The other 12 are identified as novel FA that belong to already

described n-series.

CONCLUSIONS

- A derivatization-free LC-HRMS has been developed for the quantitation of 48 FA.
- ✓ The method has been validated for the analysis of FFA in plasma NIST SRN 1950.
- Calculated FFA levels are comparable to FFA levels obtained by other authors and methodologies.
- The combination of this new LC-HRMS method with other available tools as FAMetA¹ enables the identification of unknown FA in biological samples.
- This method will be validated for determination of total FA composition, after sample saponification, in different biological samples.
- This method can be used in different research fields (pharma, foods, plants, cosmetics, etc.).

ACKNOWLEDGMENTS

M.A.A.-B. is supported by a PFIS contract from the Carlos III Health Institute of the Spanish Ministry of Economy and Competitiveness [FI18/00224]. J.C.G.-C. is supported by a grant from the Conselleria de Sanidad Universal y Salud Pública, Generalitat Valenciana, as part of Plan GenT, Generació Talent [DEI-01/20-C]. A.L. is supported by the European Regional Development Fund (FEDER) and the Carlos III Health Institute of the Spanish Ministry of Economy and Competitiveness [PI20/00580]. Part of the equipment used in this work was co-funded by the Generalitat Valenciana and European Regional Development Fund (FEDER) funds (PO

